Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 8(15), p. 2847, 2013

DOI: 10.1039/c2cp44522k

Links

Tools

Export citation

Search in Google Scholar

Low-cost industrially available molybdenum boride and carbide as "platinum-like'' catalysts for the hydrogen evolution reaction in biphasic liquid systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.