Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 5(15), p. 1488-1496, 2013

DOI: 10.1039/c2cp43666c

Links

Tools

Export citation

Search in Google Scholar

Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO 2 core–shell nanostructures

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The spectroscopic and photocatalytic properties of a series of Au@TiO(2) core-shell nanostructures are characterized. The crystallinity of the TiO(2) shells was varied by changing the etching and calcination conditions. Measurements of the photoluminescence, transient absorption, and H(2) production rate permit us to look for correlations between the spectroscopic and catalytic behaviors. We found that there is a strong effect of crystallinity on the H(2) production rate and also the stretched exponential lifetime of the photoluminescence created by short-wavelength (266 and 300 nm) photoexcitation. As the TiO(2) crystallinity is increased, the photoluminescence lifetime increases from 22 to 140 ps in a 1 ns detection window, while the H(2) production rate increases by a factor of ∼4. There is no discernible effect of crystallinity on the photoluminescence dynamics excited at 350 or 430 nm, or on the electronic dynamics measured by femtosecond transient absorption after excitation at 300 nm. We hypothesize that high-energy photons create reactive and emissive charge-separated states in parallel, and that both species are subject to similar electron-hole recombination processes that depend on sample crystallinity. Based on our observations, it can be concluded that the photoluminescence dynamics may be used to evaluate the potential performance of this class of photocatalysts.