Published in

Royal Society of Chemistry, Nanoscale, 7(5), p. 2990, 2013

DOI: 10.1039/c3nr33346a

Links

Tools

Export citation

Search in Google Scholar

Photoemission electron microscopy study of sub-200 nm self-assembled La0.7Sr0.3MnO3 epitaxial islands

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The chemical composition and the magnetic structure of individual La0.7Sr0.3MnO3 (LSMO) ferromagnetic manganite epitaxial nanostructures less than 200 nm in width are explored using Photoemission Electron Microscopy (PEEM). X-ray absorption spectra (XAS) provide separate information on the surface and the bulk composition of the nanoislands and give evidence of Mn2+ present on the surface of otherwise stoichiometric nanostructures. Ferromagnetic domains less than 70 nm are resolved using X-ray magnetic circular dichroism (XMCD), which allows for the detection of magnetic vortex states in both (001)LSMO square and (111)LSMO triangular manganite nanoislands. The evolution of single nanostructures under an in-plane magnetic field is seen to depend on the specific nanoisland size and geometry. In particular, PEEM XMCD imaging allows detecting opposite chiralities as well as a variety of magnetization behaviors for different nanoislands.