Royal Society of Chemistry, Journal of Materials Chemistry B: Materials for biology and medicine, 7(4), p. 1318-1323, 2016
DOI: 10.1039/c5tb02346g
Full text: Download
Based on the self-assembly capability of the core segment (GNNQQNY) of yeast prion Sup35, we design and synthesis a series of structurally related precursors for enzymatic formation of hydrogels. We found that, with the catalysis of alkaline phosphatase, the precursor becomes a hydrogelator that self-assembles in water to form nanofibers with an average width less than ten nanometers. Interestingly, the introduction of amyloid segment into a cytotoxic precursor (N’ffyp: D-1P) is able to abrogate the cytotoxicity of the precursor, making the resulting peptide to be cell compatible. This work contributes a new insight to the use of enzyme to form cell compatible hydrogels of peptides cross-β spine.