Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 2(2), p. 306-311, 2014

DOI: 10.1039/c3tc31904k

Links

Tools

Export citation

Search in Google Scholar

Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone–Wales defect rings

Journal article published in 2013 by Zhong-Jun Zhou, Guang-Tao Yu, Fang, Fang Ma, Xu-Ri Huang, Zhi-Jian Wu, Zhi-Ru Li
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Based on (6, 0) zigzag carbon nanotubes (ZCNTs), a Stone–Wales defect ring ([5.7]3) is constructed at one end of the ZCNTs, forming a novel nanostructure [5.7]3ZCNT. The introduction of [5.7]3 breaks the centrosymmetry of the nanotube and remarkably changes electronic and magnetic properties of the nanotube. Unlike the (6, 0)ZCNT which has an open-shell singlet ground state, the [5.7]3ZCNT has a closed-shell singlet ground state with a large dipole moment, polarizability, and first hyperpolarizability. Interestingly, the [5.7]3ZCNT itself has a donor–π–acceptor framework, in which the Stone–Wales defect ring serves as an electron donor (D) while the zigzag nanotube works as an electron acceptor (A) and a conjugated bridge (π). Moreover, increasing both the tube diameter and tube length could enhance second-order nonlinear optical (NLO) responses, with the former being more effective than the latter.