Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 15(10), p. 2026

DOI: 10.1039/b716405j

Links

Tools

Export citation

Search in Google Scholar

The grounds for the activity of TPAP in oxidation catalysis in supercritical carbon dioxide when confined in hybrid fluorinated silica matrices

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fluorinated organo-silica gels doped with tetra-n-propylammonium perruthenate (TPAP) are excellent catalysts for the aerobic oxidative dehydrogenation of alcohols in supercritical CO2 (scCO2). Their activity and stability are subtly dictated by structure, depending on the degree of fluorination and on the length of the fluoroalkyl chain linked to the silica network. Such dependence reflects the hydrophilic-hydrophobic balance (HHB) of the matrix, as evaluated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The remarkable correlation between the materials' HHB and reactivity provides a finding of general validity for reaction-controlled mechanisms, which opens the route to the synthesis of second generation sol-gel entrapped catalysts for the production of fine chemicals in scCO2.