Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 39(15), p. 16704

DOI: 10.1039/c3cp52228h

Links

Tools

Export citation

Search in Google Scholar

Synthesis and photophysics of novel biocompatible fluorescent oxocines and azocines in aqueous solution

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The spectroscopic properties in water solution of the different prototropic forms of the strongly fluorescent hemiacetal 4,9-dihydroxy-1,2-dihydro-4,11a-methanooxocino[4,5-b]benzofuran-5(4H)-one (, monardine), the aza analogue 4,9-dihydroxy-3,4-dihydro-1H-4,11a-methanobenzofuro[2,3-d]azocin-5(2H)-one (, azamonardine) and the respective 2-carboxyl derivatives (, ) have been studied by experimental and quantum-chemical methods. Monardine and carboxymonardine are the major products of new fluorogenic, room-temperature reactions of hydroxytyrosol or salvianic acid in aqueous solution, respectively, and present unique photophysical properties. Near neutral pH (pKa = 7.2) monardine switches from a weakly emitting, UV-absorbing (382 nm) neutral species to a VIS-absorbing (426 nm), blue emitting (464 nm) anion form, with a fluorescence quantum yield ϕF = 1 and single-exponential decay τF = 2.74 ns. This binary-like spectroscopic change from the neutral to the anionic form was interpreted based on time-dependent density functional theory (TDDFT) calculations as due to (i) the reversal of (n,π*) and (π,π*) lowest-lying singlet excited states, and (ii) a change in the triplet-state distribution accompanying monardine ionization which may abolish de-excitation via intersystem crossing. A similar fluorogenic reaction takes place with catecholamines such as dopamine and DOPA, to yield fluorescent azocines and which, depending on pH, may be present as cationic, neutral or anionic species. TDDFT computations of these forms were also carried out to assign the corresponding excitation transitions and emission properties. Besides the analytical interest of the fluorogenic reactions, the photochemical stability and biocompatibility of the bright-dark pH-controlled molecular switches and may facilitate novel labels and probes to be developed for superresolution fluorescence microscopy.