Published in

Royal Society of Chemistry, Catalysis Science & Technology, 4(3), p. 1108, 2013

DOI: 10.1039/c2cy20788e

Links

Tools

Export citation

Search in Google Scholar

Controlled preparation and characterization of supported CuCr2O4 catalysts for hydrogenolysis of highly concentrated glycerol

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Supported Cu–Cr catalysts were prepared by a non-alkoxide sol–gel route, and characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) measurement. Their structures were significantly tuned by the Cu–Cr molar ratio. CuCr2O4, CuCr2O4–CuO and CuCr2O4–Cr2O3 structures were confirmed in CuCr(0.5), CuCr(4) and CuCr(0.25) catalysts, respectively. A direct interaction between CuCr2O4 and CuO or Cr2O3 in CuCr(4) and CuCr(0.25) catalyst was observed by the H2-TPR and XPS results. The catalytic performance of Cu–Cr catalysts with various structures was examined by hydrogenolysis reaction of high concentrated glycerol. Under mild conditions (2.0 MPa and 130 °C) and high concentration (100 wt%), the maximum conversion (52%) was obtained over the CuCr(0.5) catalyst, while the CuCr(4) catalyst gave the highest selectivity of 1,2-PD (up to 100%). This finding will result in the production of less waste water and lower energy consumption in the following separation steps during glycerol hydrogenolysis.