Published in

Royal Society of Chemistry, Chemical Communications, 47(51), p. 9702-9705

DOI: 10.1039/c5cc02629f

Links

Tools

Export citation

Search in Google Scholar

Dispersion, solvent and metal effects in the binding of gold cations to alkynyl ligands: implications for Au(i) catalysis.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The coordination modes of the [Au(PPh3)](+) cation to metal alkynyl complexes have been investigated. On addition to ruthenium, a vinylidene complex, [Ru(η(5)-C5H5)(PPh3)2([double bond, length as m-dash]C[double bond, length as m-dash]CPh{AuPPh3})](+), is obtained while addition to a gold(iii) compound gives di- and trinuclear gold complexes depending on the conditions employed. In the trinuclear species, a gold(i) cation is sandwiched between two gold(iii) alkynyl complexes, suggesting that coordination of multiple C-C triple bonds to gold is facile.