Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 35(16), p. 18974

DOI: 10.1039/c4cp02380c

Links

Tools

Export citation

Search in Google Scholar

Strongly bound noncovalent (SO3)n:H2CO complexes (n = 1, 2)

Journal article published in 2014 by Luis Miguel Azofra, Ibon Alkorta ORCID, Steve Scheiner
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The potential energy surfaces (PES) for the SO3:H2CO and (SO3)2:H2CO complexes were thoroughly examined at the MP2/aug-cc-pVDZ computational level. Heterodimers and trimers are held together primarily by SO chalcogen bonds, supplemented by weaker CHO and/or OC bonds. The nature of the interactions is probed by a variety of means, including electrostatic potentials, AIM, NBO, energy decomposition, and electron density redistribution maps. The most stable dimer is strongly bound, with an interaction energy exceeding 10 kcal mol(-1). Trimers adopt the geometry of the most stable dimer, with an added SO3 molecule situated so as to interact with both of the original molecules. The trimers are strongly bound, with total interaction energies of more than 20 kcal mol(-1). Most such trimers show positive cooperativity, with shorter SO distances, and three-body interaction energies of nearly 3 kcal mol(-1).