Published in

Royal Society of Chemistry, Lab on a Chip, 7(7), p. 931

DOI: 10.1039/b702931d

Links

Tools

Export citation

Search in Google Scholar

A toner-mediated lithographic technology for rapid prototyping of glass microchannels

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple, fast, and inexpensive masking technology without any photolithographic step to produce glass microchannels is proposed in this work. This innovative process is based on the use of toner layers as mask for wet chemical etching. The layouts were projected in graphic software and printed on wax paper using a laser printer. The toner layer was thermally transferred from the paper to cleaned glass surfaces (microscope slides) at 130 degrees C for 2 min. After thermal transference, the glass channel was etched using 25% (v/v) hydrofluoric acid (HF) solution. The toner mask was then removed by cotton soaked in acetonitrile. The etching rate was approximately 7.1 +/- 0.6 microm min(-1). This process is economically more attractive than conventional methods because it does not require any sophisticated instrumentation and it can be implemented in any chemical/biochemical laboratory. The glass channel was thermally bonded against a flat glass cover and its analytical feasibility was investigated using capacitively coupled contactless conductivity detection (C(4)D) and laser-induced fluorescence (LIF) detection.