Published in

Elsevier, International Journal of Food Microbiology, (171), p. 136-146

DOI: 10.1016/j.ijfoodmicro.2013.11.021

Links

Tools

Export citation

Search in Google Scholar

Ecological parameters influencing microbial diversity and stability of traditional sourdough

Journal article published in 2013 by Fabio Minervini ORCID, Maria De Angelis ORCID, Raffaella Di Cagno, Marco Gobbetti
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The quality of some leavened, sourdough baked goods is not always consistent, unless a well propagated sourdough starter culture is used for the dough fermentation. Among the different types of sourdough used, the traditional sourdough has attracted the interest of researchers, mainly because of its large microbial diversity, especially with respect to lactic acid bacteria. Variation in this diversity and the factors that cause it will impact on quality and is the subject of this review. Sourdough microbial diversity is mainly caused by the following factors: (i) sourdough is obtained through spontaneous, multi-step fermentation; (ii) it is propagated using flour, whose nutrient content may vary according to the batch and to the crop, and which is naturally contaminated by microorganisms; and (iii) it is propagated under peculiar technological parameters, which vary depending on the historical and cultural background and type of baked good. In the population dynamics leading from flour to mature sourdough, lactic acid bacteria (several species of Lactobacillus sp., Leuconostoc sp., and Weissella sp.) and yeasts (mainly Saccharomyces cerevisiae and Candida sp.) outcompete other microbial groups contaminating flour, and interact with each other at different levels. Ecological parameters qualitatively and quantitatively affecting the dominant sourdough microbiota may be classified into specific technological parameters (e.g., percentage of sourdough used as inoculum, time and temperature of fermentation) and parameters that are not fully controlled by those who manage the propagation of sourdough (e.g., chemical, enzyme and microbial composition of flour). Although some sourdoughs have been reported to harbour a persistent dominant microbiota, the stability of sourdough ecosystem during time is debated. Indeed, several factors may interfere with the persistence of species and strains associations that are typical of a given sourdough: metabolic adaptability to the stressing conditions of sourdough, nutritional and antagonistic interactions among microorganisms, intrinsic robustness of microorganisms, and existence of a stable house microbiota. Further studies have to be performed in order to highlight hidden mechanisms underlying the microbial structure and stability of sourdough. The comprehension of such mechanisms would be helpful to assess the most appropriate conditions that allow keeping a given traditional sourdough as a stable microbial ecosystem, thus preserving, during time, the typical traits of the resulting product.