Published in

BioMed Central, BMC Bioinformatics, S4(15), 2014

DOI: 10.1186/1471-2105-15-s4-i1

Links

Tools

Export citation

Search in Google Scholar

ICoVax 2013: The 3rd ISV Pre-conference Computational Vaccinology Workshop

Journal article published in 2014 by Anne S. De Groot, Phoebe De Groot, Yongqun He ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Following last year's computational vaccinology workshop in Shanghai, China, the third ISV Pre-conference Computational Vaccinology Workshop (ICoVax 2013) was held in Barcelona, Spain. ICoVax 2013 provided an international platform for the attendees to showcase their research and discuss problems and solutions in the development and application of computational vaccinology and vaccine informatics tools. The first of the three full-length papers presented at ICoVax discussed the discovery of viral "camouflage" through cross-conservation of T-cell epitopes using a tool called JanusMatrix. This important paper reports that viruses may camouflage their presence in the human body by incorporating sequences in their proteins that are highly cross-conserved at the T-cell receptor surface with human genome proteins, a discovery that has wide ranging implications for the development of vaccines against viruses that use the camouflage method. The other papers described a database for storing experimentally verified data on DNA vaccines and compared therapeutic targets of western drugs to Chinese herbal medicines for cardiovascular diseases. The short poster presentations covered various uses of informatics tools for processing the DNA and microRNA of pathogens to improve vaccine coverage, efficacy and development. A live (on-line) demonstration of the vaccine design toolkit, iVax, presented by Frances Terry of EpiVax, illustrated how computational vaccinology could be used in the design of next generation vaccines.