Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 37(14), p. 13081

DOI: 10.1039/c2cp41694h

Links

Tools

Export citation

Search in Google Scholar

A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN2

Journal article published in 2012 by Quan Li, Hanyu Liu ORCID, Dan Zhou, Weitao Zheng, Zhijian Wu, Yanming Ma ORCID, Yanming
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel body-centered tetragonal CN(2) (4 units per cell), named as bct-CN(2), has been predicted here using our newly developed particle swarm optimization algorithm for crystal structure prediction. Bct-CN(2) is energetically much superior (3.022 eV per f.u.) to previously proposed pyrite structure and stable against decomposition into a mixture of diamond + N(2) or 1/3(C(3)N(4) + N(2)) above 45.4 GPa. No imaginary phonon frequencies in the whole Brillouin zone indicate bct-CN(2) is dynamically stable. The electronic calculations indicate that bct-CN(2) is a wide gap dielectric material with an indirect band gap of 3.6 eV. The ideal tensile, shear, and compressive strength at large strains of bct-CN(2) are examined to understand further the microscopic mechanism of the structural deformation. Strikingly, it is found that bct-CN(2) has high calculated ideal strength, bulk modulus, shear modulus, and simulated hardness, indicating its very incompressible and superhard nature. The results provide new thoughts for designing and synthesizing novel superhard carbon nitrides, and insights for understanding the mechanical properties.