Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 20(20), p. 4207

DOI: 10.1039/c0jm00363h

Links

Tools

Export citation

Search in Google Scholar

Rare earth scandate thin films by atomic layer deposition: Effect of the rare earth cation size

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of amorphous REScO3 films was deposited by atomic layer deposition (ALD) using rare earth (RE) β-diketonate precursors RE(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionato) together with ozone in an attempt to study the effect of the RE3+ cation size on various film properties. A clear correlation between the deposition rate and the RE3+ cation radius was established. REScO3 films with a metal ratio RE : Sc close to the stoichiometric one, viz. RE : Sc = 1, and a small excess of oxygen were realized by adjusting the metal precursor pulsing ratio. Small amount of carbon was found as impurity in all the films, concentrations varying from 1–3 at% (RE = La, Gd or Dy) to 0.4–0.5 at% (RE = Er or Lu). Also the crystallization temperature and the resulting phase were affected by the RE3+ cation size. The REScO3 films were found to crystallize either as an orthorhombic perovskite phase or as a solid solution of the cubic C-type oxides. High crystallization temperatures of 800–900 °C were observed for LaScO3, GdScO3 and DyScO3. All the films gave smooth C–V curves with very small hysteresis (typically <35 mV). The highest dielectric constant (κ ≈ 24) was found for DyScO3. Also the leakage current densities were small, typically in a range of 10−6–10−9 A cm−2 at 1 V. The results confirm that REScO3 films deposited by ALD are potential candidates for new generation high-κ gate dielectrics.