Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 4(3), p. 1450-1457

DOI: 10.1039/c4ta04785k

Links

Tools

Export citation

Search in Google Scholar

Origin of the increased open circuit voltage in PbS-CdS core-shell quantum dot solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lead sulfide quantum dots (PbS QDs) show great potential for efficient, low cost photovoltaic applications. Currently, device efficiencies are limited by the high density of trap states caused by lattice imperfections on the QD surface. Introducing a thin shell of wide bandgap semiconductor to the QD surface is a promising method to passivate these trap states. Here we demonstrate solar cells made from PbS-CdS core-shell QDs, yielding a 147 mV increase in VOC compared to core only PbS QDs. We explore the physical reason for this enhancement and demonstrate that it is indeed caused by improved passivation of the PbS surface by the CdS shell, leading to a lower electron trap density.