Published in

Royal Society of Chemistry, Dalton Transactions, 20(39), p. 4786

DOI: 10.1039/b926709c

Links

Tools

Export citation

Search in Google Scholar

Variation of the ground spin state in homo- and hetero-octanuclear copper(II) and nickel(II) double-star complexes with a meso-helicate-type metallacryptand core

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Homo- and heterometallic octanuclear complexes of formula Na₂{[Cu₂(mpba)₃][Cu(Me₅dien)]₆}-(ClO₄)₆·12H₂O (1), Na₂{[Cu₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (2), Na₂{[Ni₂(mpba)₃]-[Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (3), Na₂{[Ni₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·9H₂O (4), {[Ni₂(mpba)₃][Ni(dipn)(H₂O)]₆}(ClO₄)₄·12.5H₂O (5), and {[Ni₂(Mempba)₃][Ni(dipn)-(H₂O)]₆}(ClO₄)₄·12H₂O (6) [mpba = 1,3-phenylenebis(oxamate), Mempba = 4-methyl-1,3-phenylenebis(oxamate), Me₅dien = N,N,N',N'',N''-pentamethyldiethylenetriamine, and dipn = dipropylenetriamine] have been synthesized through the "complex-as-ligand/complex-as-metal" strategy. Single-crystal X-ray diffraction analyses of 1, 3, and 5 show cationic M(II)₂M'(II)₆ entities (M, M' = Cu and Ni) with an overall double-star architecture, which is made up of two oxamato-bridged M(II)M'(II)₃ star units connected through three meta-phenylenediamidate bridges between the two central metal atoms leading to a binuclear metallacryptand core of the meso-helicate-type. Dc magnetic susceptibility data for 1-6 in the temperature range 2-300 K have been analyzed through a "dimer-of-tetramers" model [H = - J(S(1A)·S(3A) + S(1A)·S(4A) + S(1A)·S(5A) + S(2B)·S(6B) + S(2B)·S(7B) + S(2B)·S(8B)) - J'S(1A)·S(2B), with S(1A) = S(2B) = S(M) and S(3A) = S(4A) = S(5A) = S(6B) = S(7B) = S(8B) = S(M')]. The moderate to strong antiferromagnetic coupling between the M(II) and M'(II) ions through the oxamate bridge in 1-6 (-J(Cu-Cu) = 52.0-57.0 cm⁻¹, -J(Ni-Cu) = 39.1-44.7 cm⁻¹, and -J(Ni-Ni) = 26.3-26.6 cm⁻¹) leads to a non-compensation of the ground spin state for the tetranuclear M(II)M'(II)₃ star units [S(A) = S(B) = 3S(M') - S(M) = 1 (1 and 2), 1/2 (3 and 4), and 2 (5 and 6)]. Within the binuclear M(II)₂ meso-helicate cores of 1-4, a moderate to weak antiferromagnetic coupling between the M(II) ions (-J'(Cu-Cu) = 28.0-48.0 cm⁻¹ and -J'(Ni-Ni) = 0.16-0.97 cm⁻¹) is mediated by the triple m-phenylenediamidate bridge to give a ground spin singlet (S = S(A) - S(B) = 0) state for the octanuclear M(II)₂Cu(II)₆ molecule. Instead, a weak ferromagnetic coupling between the Ni(II) ions (J'(Ni-Ni) = 2.07-3.06 cm⁻¹) operates in the binuclear Ni(II)₂ meso-helicate core of 5 and 6 leading thus to a ground spin nonet (S = S(A) + S(B) = 4) state for the octanuclear Ni(II)₈ molecule. Dc magnetization data for 5 reveal a small but non-negligible axial magnetic anisotropy (D = -0.23 cm⁻¹) of the S = 4 Ni(II)₈ ground state with an estimated value of the energy barrier for magnetization reversal of 3.7 cm⁻¹ (U = -DS²). Ac magnetic susceptibility data for 5 show an unusual slow magnetic relaxation behaviour at low temperatures which is typical of "cluster glasses". The temperature dependence of the relaxation time for 5 has been interpreted on the basis of the Vogel-Fulcher law for weakly interacting clusters, with values of 2.5 K, 1.4 × 10⁻⁶ s, and 4.0 cm⁻¹ for the intermolecular interaction parameter (T₀), the pre-exponential factor (τ₀), and the effective energy barrier (U(eff)), respectively.