Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Chemistry - A European Journal, 14(13), p. 3871-3877, 2007

DOI: 10.1002/chem.200700159

Links

Tools

Export citation

Search in Google Scholar

Recognition of DNA Three-Way Junctions by Metallosupramolecular Cylinders: Gel Electrophoresis Studies

Journal article published in 2007 by Jaroslav Malina ORCID, Michael J. Hannon, Viktor Brabec ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interaction of metallosupramolecular cylinders with DNA three-way junctions has been studied by gel electrophoresis. A recent X-ray crystal structure of a palindromic oligonucleotide forming part of a complex with such a cylinder revealed binding at the heart of a three-way junction structure. The studies reported herein confirm that this is not solely an artefact of crystallisation and reveal that this is a potentially very powerful new mode of DNA recognition with wide scope. The cylinders are much more effective at stabilizing three-way junctions than simple magnesium di-cations or organic or metallo-organic tetra-cations, with the M cylinder enantiomer being more effective than P. The recognition is not restricted to three-way junctions formed from palindromic DNA with a central AT step at the junction; non-palindromic three-way junctions and those with GC steps are also stabilised. The cylinder is also revealed to stabilise other Y-shaped junctions, such as that formed at a fraying point in duplex DNA (for example, a replication fork), and other DNA three-way junction structures, such as those containing unpaired nucleotides, perhaps by opening up this structure to access the central cavity.