Published in

Royal Society of Chemistry, Journal of Materials Chemistry C Materials for optical and electronic devices, 14(4), p. 3041-3058, 2016

DOI: 10.1039/c5tc02849c

Links

Tools

Export citation

Search in Google Scholar

Tetraaryl pyrenes: photophysical properties, computational studies, crystal structures, and application in OLEDs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pyrene was derivatized in positions 1, 3, 6, and 8 to yield a series of nine tetraarylpyrenes for which absorption, emission, emission lifetimes and solvatochromism in solution were determined. The fluorescence quantum yields in thin films and crystalline state, electrochemistry, and quantum-chemical calculations were completed for the series along with the X-ray crystal structure analysis of compounds 1, 2, 4, 5, 7, and 9. Compounds 2, 3, 4 as well as 7 were identified as the most suitable candidates for OLED application. Notably, in an unoptimized single-layer device geometry, these compounds exhibited blue electroluminescence coupled with impressively low turn-on voltages and high maximum luminances such as 2.8 V and 13 542 cd m-2 at 8.2 V for compound 2, respectively. © The Royal Society of Chemistry 2016.