Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 5(18), p. 4026-4034, 2016

DOI: 10.1039/c5cp06537b

Links

Tools

Export citation

Search in Google Scholar

Efficient Electron-promoted Desorption of Benzene from Water Ice Surfaces

Journal article published in 2016 by Demian Marchione, John D. Thrower, Martin R. S. McCoustra ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Desorption of benzene (C6H6) from solid water surfaces [compact amorphous solid water (c-ASW) and crystalline ice (CI)] during irradiation of ultrathin solid films with low energy (250-300 eV) electrons has been investigated. The observed desorption behaviour is complex but typically two desorption components, with particularly large cross-sections, were present in the observed signal. A fast component, with a cross-section up to 10−15 cm2, is attributed to desorption of isolated C6H6 molecules that are hydrogen-bonded to small clusters of water (H2O) molecules on the solid water surface. A slower component, with a cross-section of ca. 10−17 cm2, is attributed mainly to desorption from larger C6H6 islands on the solid water surface. Possible desorption mechanisms are proposed and astrophysical implications are discussed.