Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 42(12), p. 14121

DOI: 10.1039/c0cp00482k

Links

Tools

Export citation

Search in Google Scholar

Optical properties of protonated Rhodamine 19 isomers in solution and in the gas phase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Visible light absorption and fluorescence of three positional isomers of protonated Rhodamine 19 (o-, m- and p-R19H(+)) were studied in solution and in the gas phase. In solution, strong solvatochromic effects lead to spectral shifts between rhodamine isomers. In contrast, in the gas phase, these species were found to exhibit very similar fluorescence, while pronounced differences were observed in the absorption spectra. The o-R19H(+) was found to have the largest Stokes shift in the gas phase (around 10 nm), suggesting that an intramolecular relaxation operates in the excited electronic state for this isomer. Several mechanisms for this relaxation are proposed, such as the change of the dihedral angle between the carboxyphenyl group and the xanthene chromophore or that between the carboxylic group and the phenyl ring.