Published in

Royal Society of Chemistry, Polymer Chemistry, 2(6), p. 198-212

DOI: 10.1039/c4py01356e

Links

Tools

Export citation

Search in Google Scholar

Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates

Journal article published in 2014 by Sean Lowe, Neil M. O'Brien Simpson ORCID, Luke A. Connal
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nonspecific protein adsorption and/or microbial adsorption on biomedical materials adversely affects the efficacy of a range of biomedical systems, from implants and biosensors to nanoparticles. To address this problem, antibiofouling polymers can be coated on biomedical devices or built into nanoparticles to confer protein and/or microbial repellent properties. The current review provides an overview of the range of synthetic polymers currently used to this end and explores their biomedical potential. The most widely-used antifouling polymer, poly(ethylene glycol) (PEG) is reviewed alongside several promising alternatives, including zwitterionic polymers, poly(hydroxyfunctional acrylates), poly(2-oxazoline)s, poly(vinylpyrrolidone), poly(glycerol), peptides and peptoids. For each material, notable applications for both nanomedicine and macroscopic surface coatings are highlighted.