Published in

Wiley-VCH Verlag, ChemInform, 6(36), 2005

DOI: 10.1002/chin.200506272

Royal Society of Chemistry, New Journal of Chemistry, 10(28), p. 1177

DOI: 10.1039/b402661f

Links

Tools

Export citation

Search in Google Scholar

Chemical Modification of C60 for Materials Science Applications

Journal article published in 2004 by Jean-Francois Nierengarten ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fullerene derivatives have shown a wide range of physical and chemical properties that make them attractive for the preparation of supramolecular assemblies and new materials. As a part of this research, we are interested in the chemical modification of C60 for various applications. These results are summarized in the present account to illustrate the current state-of-the-art of fullerene chemistry for the development of new advanced materials. In the first part, some of the fundamental architectural requirements needed for the design of amphiphilic fullerene derivatives capable of forming stable Langmuir films are reported. In particular, we have shown that the encapsulation of C60 in a cyclic addend surrounded by long alkyl chains, cholesterol subunits or dendritic branches is an efficient strategy to prevent the irreversible aggregation resulting from the strong fullerene-fullerene interactions usually observed for amphiphilic C60 derivatives at the air–water interface. In the second part, water-soluble C60 derivatives and fullerene-functionalized dendrimers are described. These compounds are easy to process, owing to their high solubility, and thus easily incorporated in mesoporous silica glasses for optical limiting applications. Finally, our recent developments on organic photovoltaic cells using covalently linked fullerene-(π-conjugated oligomer) ensembles as the active layer are summarized. This molecular approach appears to be particularly interesting since the behavior of a unique molecule in a photovoltaic cell and the study of its electronic properties means one can easily obtain the structure-activity relationships leading to a better understanding of the photovoltaic conversion.