Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 9(17), p. 6470-6477

DOI: 10.1039/c4cp05761a

Links

Tools

Export citation

Search in Google Scholar

Synthesis of palladium nanoparticles on TiO2(110) using a beta-diketonate precursor

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adsorption of palladium hexafluoracetylacetone (Pd(hfac)2) and nucleation of Pd nanoparticles on TiO2(110) surface were observed using scanning tunneling microscopy (STM). Surface species of Pd(hfac)* and Ti(hfac)* uniformly adsorbed on TiO2(110) upon exposure of Pd(hfac)2. No preferential nucleation was observed for the surface species. Atomic resolution STM images revealed that both Pd(hfac)* and Ti(hfac)* appeared on the metastable Ti(5c) sites. After annealing at 700 K, sub-nm Pd nanoparticles were observed across the TiO2(110) without preferential nucleation. The adsorption preferences of Pd(hfac), hfac, and atomic Pd on TiO2(110) surface were studied using density functional theory (DFT), and possible decomposition pathways of Pd(hfac)2 leading to the formation of Pd nucleation sites were presented.