Published in

Royal Society of Chemistry, Chemical Society Reviews, 3(41), p. 1088-1110, 2012

DOI: 10.1039/c1cs15055c

Links

Tools

Export citation

Search in Google Scholar

Ligand design for functional metal–organic frameworks

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Metal-organic frameworks (MOFs), also known as coordination polymers, are formed by the self-assembly of metallic centres and bridging organic linkers. In this critical review, we review the key advances in the field and discuss the relationship between the nature and structure of specifically designed organic linkers and the properties of the products. Practical examples demonstrate that the physical and chemical properties of the linkers play a decisive role in the properties of novel functional MOFs. We focus on target materials suitable for the storage of hydrogen and methane, sequestration of carbon dioxide, gas separation, heterogeneous catalysis and as magnetic and photoluminescent materials capable of both metal- and ligand-centred emission, ion exchangers and molecular sieves. The advantages of highly active discrete complexes as metal-bearing ligands in the construction of MOFs are also briefly reviewed (128 references).