Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 3(18), p. 2230-2241, 2016

DOI: 10.1039/c5cp06121k

Links

Tools

Export citation

Search in Google Scholar

Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method

Journal article published in 2016 by Vincenzo Amendola ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The integration of silver and gold nanoparticles with graphene is frequently sought for the realization of hybrid materials with superior optical, photoelectric and photocatalytic performances. A crucial aspect for these applications is how the surface plasmon resonance of metal nanoparticles is modified after assembly with graphene. Here, we used the discrete dipole approximation method to study the surface plasmon resonance of silver and gold nanoparticles in the proximity of a graphene flake or embedded in graphene structures. Surface plasmon resonance modifications were investigated for various shapes of metal nanoparticles and for different morphologies of the nanoparticle-graphene nanohybrids, in a step-by-step approach. Calculations show that the surface plasmon resonance of Ag nanoparticles is quenched in nanohybrids, whereas either surface plasmon quenching or enhancement can be obtained with Au nanoparticles, depending on the configuration adopted. However, graphene effects on the surface plasmon resonance are rapidly lost already at a distance of the order of 5 nm. These results provide useful indications for characterization and monitoring the synthesis of hybrid nanostructures, as well as for the development of hybrid metal nanoparticle/graphene nanomaterials with desired optical properties.