Published in

Royal Society of Chemistry, Nanoscale, 12(6), p. 6953

DOI: 10.1039/c4nr00516c

Links

Tools

Export citation

Search in Google Scholar

Carbon tips for all-carbon single-molecule electronics

Journal article published in 2014 by Yannick J. Dappe, César Gonzalez ORCID, Juan Carlos Cuevas
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present here an exhaustive ab initio study of the use of carbon-based tips as electrodes in single-molecule junctions. Motivated by recent experiments, we show that carbon tips can be combined with other carbon nanostructures, such as graphene, to form all-carbon molecular junctions with molecules like benzene or C 60. Our results show that the use of carbon tips can lead to relatively conductive molecular junctions. However, contrary to junctions formed with standard metals, the conductance traces recorded during the formation of the all-carbon single-molecule junctions do not exhibit clear conductance plateaus, which can be attributed to the inability of the hydrogenated carbon tips to form chemical bonds with the organic molecules. Additionally, we explore here the use of carbon tips for scanning tunneling microscopy and show that they are well suited for obtaining sample images with atomic resolution.