Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 3(14), p. 1200-1211, 2012

DOI: 10.1039/c1cp23030a

Links

Tools

Export citation

Search in Google Scholar

Synthesis, structural and hydrogenation properties of Mg-rich MgH 2 –TiH 2 nanocomposites prepared by reactive ball milling under hydrogen gas

Journal article published in 2012 by Fermin Cuevas ORCID, Dmytro Korablov, Michel Latroche
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

MgH(2)-TiH(2) nanocomposites have been obtained by reactive ball milling of elemental powders under 8 MPa of hydrogen pressure. The composites consist of a mixture of β-rutile MgH(2), γ-orthorhombic high pressure MgH(2) and ε-tetragonal TiH(2) phases with nanosized crystallites ranging from 4 to 12 nm. In situ hydrogen absorption curves on milling reveal that nanocomposite formation occurs in less than 50 min through the consecutive synthesis of the TiH(2) and MgH(2) phases. The abrasive and catalytic properties of TiH(2) speed up the formation of the MgH(2) phase. Thermodynamic, kinetic and cycling hydrogenation properties have been determined for the 0.7MgH(2)-0.3TiH(2) composite and compared to nanometric MgH(2). Only the MgH(2) phase desorbs hydrogen reversibly at moderate temperature (523 to 598 K) and pressure (10(-3) to 1 MPa). The presence of TiH(2) does not modify the thermodynamic properties of the Mg/MgH(2) system. However, the MgH(2)-TiH(2) nanocomposite exhibits outstanding kinetic properties and cycling stability. At 573 K, H-sorption takes place in less than 100 s. This is 20 times faster than for a pure nanometric MgH(2) powder. We demonstrate that the TiH(2) phase inhibits grain coarsening of Mg, which allows extended nucleation of the MgH(2) phase in Mg nanoparticles before a continuous and blocking MgH(2) hydride layer is formed. The low crystallinity of the TiH(2) phase and its hydrogenation properties are also compatible with a gateway mechanism for hydrogen transfer from the gas phase to Mg. Mg-rich MgH(2)-TiH(2) nanocomposites are an excellent media for hydrogen storage at moderate temperatures.