Published in

Royal Society of Chemistry, Journal of Materials Chemistry B: Materials for biology and medicine, 34(1), p. 4297

DOI: 10.1039/c3tb20245c

Links

Tools

Export citation

Search in Google Scholar

Studies on intracellular delivery of carboxyl-coated CdTe quantum dots mediated by fusogenic liposomes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of Quantum Dots (QDs) as fluorescent probes for understanding biological functions has emerged as an advantageous alternative over application of conventional fluorescent dyes. Intracellular delivery of QDs is currently a specific field of research. When QDs are tracking a specific target in live cells, they are mostly applied for extracellular membrane labeling. In order to study intracellular molecules and structures it is necessary to deliver free QDs into the cell cytosol. In this work, we adapted the freeze and thaw method to encapsulate water dispersed carboxyl-coated CdTe QDs into liposomes of different compositions, including cationic liposomes with fusogenic properties. We showed that labeled liposomes were able to fuse with live human stem cells and red blood cells in an endocytic-independent way. We followed the interactions of liposomes containing QDs with the cells. The results were minutely discussed and showed that QDs were delivered, but they were not freely diffused in the cytosol of those cells. We believe that this approach has the potential to be applied as a general route for encapsulation and delivery of any membrane-impermeant material into living cells.