Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 43(13), p. 19480

DOI: 10.1039/c1cp22814e

Links

Tools

Export citation

Search in Google Scholar

Carbon dioxide reduction by mononuclear ruthenium polypyridyl complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

New mononuclear ruthenium complexes with general formula [Ru(bid)(B)(Cl)] (bid is (1Z,3Z)-1,3-bis(pyridin-2-ylmethylene)isoindolin-2-ide; B = bidentate ligand 2,2'-bipyridine or R(2)-bpy, where R = COOEt or OMe) were synthesized and tested as precatalysts for the hydrogenative reduction of CO(2) in 2,2,2-trifluoroethanol (TFE) as solvent with added NEt(3). Significant amounts of formic acid were produced by these catalysts and a kinetic analysis based on initial rate constants was carried out. The potential mechanisms including intermediate species for these catalytic systems were investigated by means of quantum chemical calculations to gain deeper insight into the processes. The effect of electron-donating and electron-withdrawing groups on catalyst performance was studied both experimentally and theoretically.