Published in

American Society for Microbiology, Molecular and Cellular Biology, 5(17), p. 2529-2537, 1997

DOI: 10.1128/mcb.17.5.2529

Links

Tools

Export citation

Search in Google Scholar

Myc versus USF: Discrimination at the cad gene is determined by core promoter elements

Journal article published in 1997 by Kathryn E. Boyd, Peggy J. Farnham ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Carbamoyl-phosphate synthase/aspartate carbamoyltransferase/dihydroorotase, which is encoded by the cad gene, is required for the first three rate-limiting steps of de novo pyrimidine biosynthesis. It has been previously demonstrated that cad transcription increases at the G1/S-phase boundary, as quiescent cells reenter the proliferative cell cycle. The growth-responsive element has been mapped to an E box at +65 in the hamster cad promoter. Using an in vivo UV cross-linking and immunoprecipitation assay, we show that Myc, Max, and upstream stimulatory factor (USF) bind to the chromosomal cad promoter. To determine whether binding of Myc-Max or USF is critical for cad growth regulation, we analyzed promoter constructs which contain mutations in the nucleotides flanking the E box. We demonstrate that altering nucleotides which flank the cad E box to sequences which decrease Myc-Max binding in vitro correlates with a loss of cad G1/S-phase transcriptional activation. This result supports the conclusion that binding of Myc-Max, but not USF, is essential for cad regulation. Our investigations demonstrate that the endogenous cad E box can be bound by more than one transcription factor, but growth-induced cad expression is achieved only by Myc.