Royal Society of Chemistry, Organic and Biomolecular Chemistry, 17(13), p. 4940-4952, 2015
DOI: 10.1039/c5ob00296f
Full text: Download
The simple octyl β-D-galactofuranoside was previously described as good bacteriostatic agent against Mycobacterium smegmatis, a non-pathogenic model of M. tuberculosis. In order to decipher its mechanism of action, STD NMR on whole M. smegmatis cells was implemented. It outlined the crucial role of the alkyl chain and the possibility of modulation on the furanosyl entity. From there, 16 new alkyl furanosides were synthesized in order to optimize the mycobacteriostatic activity. They all present the pending alkyl chain in a 1,2-trans configuration relative to the sugar ring. Three families were studied, that differ by the substituent on the primary position of the galactofuranose ring, the series or the pending alkyl chain. Four of these neofuranosides showed growth inhibition inferior to the parent octyl β-D-galactofuranoside. Double alkyl chains at C-1 and polar substituent on the primary position of the furanoside significantly favored the activity. Finally, a mixed biantennary alkyl/aryl β-D-galactofuranoside exhibited the best growth inhibition concentration at 90 µM.