Published in

Royal Society of Chemistry, Nanoscale, 7(7), p. 3055-3059, 2015

DOI: 10.1039/c4nr06789d

Links

Tools

Export citation

Search in Google Scholar

Structural and electronic properties of an ordered grain boundary formed by separated (1,0) dislocations in graphene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present an investigation of the structural and electronic properties of an ordered grain boundary (GB) formed by separated pentagon-heptagon pairs in single-layer graphene/SiO2 using scanning tunneling microscopy/spectroscopy (STM/STS), coupled with density functional theory (DFT) calculations. It is observed that the pentagon-heptagon pairs, i.e., (1,0) dislocations, form a periodic quasi-one-dimensional chain. The (1,0) dislocations are separated by 8 transverse rows of carbon rings, with a period of ∼2.1 nm. The protruded feature of each dislocation shown in the STM images reflects its out-of-plane buckling structure, which is supported by the DFT simulations. The STS spectra recorded along the small-angle GB show obvious differential-conductance peaks, the positions of which qualitatively accord with the van Hove singularities from the DFT calculations.