Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Talanta, (147), p. 213-219, 2016

DOI: 10.1016/j.talanta.2015.09.062

Links

Tools

Export citation

Search in Google Scholar

Classification of 7 monofloral Honey varieties by PTR-ToF-MS direct headspace analysis and chemometrics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Honey, in particular monofloral varieties, is a valuable commodity. Here, we present proton transfer reaction-time of flight-mass spectrometry, PTR-ToF-MS, coupled to chemometrics as a successful tool in the classification of monofloral honeys, which should serve in fraud protection against mispresentation of the floral origin of honey. We analyzed 7 different honey varieties from citrus, chestnut, sunflower, honeydew, robinia, rhododendron and linden tree, in total 70 different honey samples and a total of 206 measurements. Only subtle differences in the profiles of the volatile organic compounds (VOCs) in the headspace of the different honeys could be found. Nevertheless, it was possible to successfully apply 6 different classification methods with a total correct assignment of 81-99% in the internal validation sets. The most successful methods were stepwise linear discriminant analysis (LDA) and probabilistic neural network (PNN), giving total correct assignments in the external validation sets of 100 and 90%, respectively. Clearly, PTR-ToF-MS/chemometrics is a powerful tool in honey classification.