Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 36(18), p. 4297

DOI: 10.1039/b805141k

Links

Tools

Export citation

Search in Google Scholar

Cu(I) chelated poly-alkoxythiophene enhancing photovoltaic device composed of a P3HT/PCBM heterojunction system

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the Cu + chelated poly-alkoxythiophene (P3MEET) enhancement of a solar cell device consisting of a P3HT/PCBM heterojunction system. Compared to the reference P3HT/PCBM system, a consistent increase of conversion efficiency of 0.9% via an apparent increase of incident-photon-to-current conversion efficiency (IPCE) is achieved upon optimizing the ratio of P3MEET-Cu + : P3HT : PCBM to 1 : 9 : 6 by weight, in which 7.5 mol% of CuBr is added upon synthesizing P3MEET-Cu + . The results, in combination with relevant data gathered from atomic force microscopy, cyclic voltammetry, and electrochemical impedance spectra, lead us to conclude that the match in redox potential and increase of ordering of the film upon doping P3MEET-Cu + play two key roles in enhancing the performance.