Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 1(2), p. 66-72

DOI: 10.1039/c3ta13775a

Links

Tools

Export citation

Search in Google Scholar

Beneficial effects of stoichiometry and nanostructure for a LiBH4–MgH2hydrogen storage system

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hydrogen storage system [MgH2–2LiBH4] shows attractive properties such as favorable thermodynamics, high hydrogen capacity and reversibility. However, there exists an incubation period that amounts up to 10 hours in the dehydrogenation steps, which restricts this system as a practical material. In this study, the influences of stoichiometry and the nanoscale MgH2 were investigated for the system. Considerably shortened incubation times were achieved with deficit amounts of LiBH4 or by using nanoscale MgH2. In addition, the application of nanoscale MgH2 prevented or suppressed the formation of [B12H12]2− in the dehydrogenation, which is otherwise an issue concerning the re-cyclability.