Published in

Wiley, Proteomics, 23-24(15), p. 4051-4063, 2015

DOI: 10.1002/pmic.201500167

Links

Tools

Export citation

Search in Google Scholar

Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proteomic studies including marine mammals are rare, largely due to the lack of fully sequenced genomes. This has hampered the application of these techniques toward biomarker discovery efforts for monitoring of health and disease in these animals. We conducted a pilot label-free LC-MS/MS study to profile and compare the cerebrospinal fluid from California sea lions with domoic acid toxicosis (DAT) and without DAT. Across 11 samples, a total of 206 proteins were identified (FDR<0.1) using a composite mammalian database. Several peptide identifications were validated using stable isotope labeled peptides. Comparison of spectral counts revealed seven proteins that were elevated in the cerebrospinal fluid from sea lion with DAT: complement C3, complement factor B, dickkopf-3, malate dehydrogenase 1, neuron cell adhesion molecule 1, gelsolin, and neuronal cell adhesion molecule. Immunoblot analysis found reelin to be depressed in the cerebrospinal fluid from California sea lions with DAT. Mice administered domoic acid also had lower hippocampal reelin protein levels suggesting that domoic acid depresses reelin similar to kainic acid. In summary, proteomic analysis of cerebrospinal fluid in marine mammals is a useful tool to characterize the underlying molecular pathology of neurodegenerative disease.This article is protected by copyright. All rights reserved