Published in

Royal Society of Chemistry, Dalton Transactions, 4(43), p. 1897-1905

DOI: 10.1039/c3dt52748d

Links

Tools

Export citation

Search in Google Scholar

Slow magnetic relaxation in lanthanide ladder type coordination polymers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A series of four isostructural lanthanide-containing one dimensional coordination polymers with picolinic (pic) and glutaric (glu) acids, Ln(glu)(pic)(H2O)2, where Ln = Gd(III) (), Tb(III) (), Dy(III) () and Er(III) () were synthesized under hydrothermal conditions and structurally characterized by powder and single-crystal X-ray diffraction, elemental analysis, IR spectroscopy and thermogravimetric measurements. These compounds are isostructural to the previously reported Sm(glu)(pic)(H2O)2 and the structure consists in pairs of lanthanide ions double bridged by carboxylic groups which are connected along c by the glutaric acid ligands as a ladder type 1D coordination polymer. The magnetic properties of these compounds were studied by static magnetization and AC magnetic susceptibility measurements in the temperature range 1.7-300 K. Weak dominant ferromagnetic interactions between lanthanide cations were found in the compounds, except in compound . Compounds , and reveal frequency dependent AC susceptibility and slow relaxation of the magnetization under applied external static field. These data classify the Gd(III), Dy(III) and Er(III) compounds as molecular magnets. In spite of the ladder chain structure of the compounds this magnetic behaviour is not due to a single chain but instead it is ascribed to single ion anisotropic effects in the case of and and possibly to a phonon-bottleneck effect of the spin-lattice relaxation in .