Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 35(15), p. 14660, 2013

DOI: 10.1039/c3cp52026a

Links

Tools

Export citation

Search in Google Scholar

Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Spin hyperpolarization can be coherently transferred to other nuclei in field-cycling NMR experiments. At low magnetic fields spin polarization is redistributed in a strongly coupled network of spins. Polarization transfer is most efficient at fields where level anti-crossings (LACs) occur for the nuclear spin-states. A further condition is that field switching to the LAC positions is non-adiabatic in order to convert the starting population differences into spin coherences that cause time-dependent mixing of states. The power of this method has been demonstrated by studying transfer of photo-Chemically Induced Dynamic Nuclear Polarization (photo-CIDNP) in N-acetyl-tryptophan. We have investigated the magnetic field dependence and time dependence of coherent CIDNP transfer and directly assessed nuclear spin LACs by studying polarization transfer at specific field positions. The proposed approach based on LACs is not limited to CIDNP but is advantageous for enhancing NMR signals by spin order transfer from any type of hyper-polarized nuclei.