Published in

Royal Society of Chemistry, Journal of Materials Chemistry B: Materials for biology and medicine, 38(1), p. 4947, 2013

DOI: 10.1039/c3tb20550a

Links

Tools

Export citation

Search in Google Scholar

Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A method for the direct electrodeposition of globular nano-hydroxyapatite (nHAp) onto reduced graphene oxide (RGO) is presented and a model for the specific growth preference is discussed. Results show that the carboxyl (carboxylic acid)/carboxylate functional groups attached directly to the RGO after oxygen plasma treatment were essential to accelerate the OH- formation and the deposition of globular nHAp crystals. High resolution scanning electron microscopy, energy dispersive X-ray and X-ray diffraction showed that homogeneous, highly crystalline, stoichiometric nHAp crystals, with preferential growth in the (002) plane direction, were formed without any thermal treatment. The nHAp/RGO composites were shown to be an appropriate surface for mesenchymal stem cell adhesion with active formation of membrane projections.