Published in

Royal Society of Chemistry, Physical Chemistry Chemical Physics, 39(13), p. 17704, 2011

DOI: 10.1039/c1cp22072a

Links

Tools

Export citation

Search in Google Scholar

Photocurrents at polarized liquid|liquid interfaces enhanced by a gold nanoparticle film

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Photocurrent responses associated with the interfacial quenching of the photo-excited water-soluble zinc meso-tetra(4-carboxyphenyl)porphyrin (ZnTPPC) by ferrocene have been studied at a water|1,2-dichloroethane interface in the absence and in the presence of adsorbed gold nanoparticles. Upon addition of methanol, a mirror-like gold film is formed and an important enhancement of the photocurrent response can be observed. Intensity modulated photocurrent spectroscopy experiments (IMPS) have been performed, in order to deconvolute in the frequency domain the contribution from the competition between the recombination and the product separation arising after the electron transfer, and the attenuation associated with the resistance and interfacial capacitance (RC(int)) time constant of the cell.