Published in

Royal Society of Chemistry, Dalton Transactions, 29(40), p. 7541, 2011

DOI: 10.1039/c1dt10309a

Links

Tools

Export citation

Search in Google Scholar

Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new family of photoluminescent neutral and anionic di-carboranyl and tetra-carboranyl derivatives have been synthesized and characterized. The reaction of α,α'-bis(3,5-bis(bromomethyl)phenoxy-m-xylene with 4 equiv. of the monolithium salt of 1-Ph-1,2-C(2)B(10)H(11) or 1-Me-1,2-C(2)B(10)H(11) gives the neutral tetracarboranyl-functionalized aryl ether derivatives closo-1 and closo-2, respectively. The addition of the monolithium salt of 1-Ph-1,2-closo-C(2)B(10)H(11) to α,α,'-dibromo-m-xylene or 2,6-dibromomethyl-pyridine gives the corresponding di-carboranyl derivatives closo-3 and closo-4. These compounds, which contain four or two closo clusters, were degraded using the classical method, KOH in EtOH, affording the corresponding nido species, which were isolated as potassium or tetramethylammonium salts. All the compounds were characterized by IR, (1)H, (11)B and (13)C NMR spectroscopy, and the crystal structure of closo-3 was analysed by X-ray diffraction. The carboranyl fragments are bonded through CH(2) units to different organic moieties, and their influence on the photoluminescent properties of the final molecules has been studied. All the closo- and nido-carborane derivatives exhibit a blue emission under ultraviolet excitation at room temperature in different solvents. The fluorescence properties of these closo and nido-derivatives depend on the substituent (Ph or Me) bonded to the C(cluster), the solvent polarity, and the organic unit bearing the carborane clusters (benzene or pyridine). In the case of nido-derivatives, an important effect of the cation is also observed.