Published in

Royal Society of Chemistry, Organic and Biomolecular Chemistry, 38(11), p. 6493, 2013

DOI: 10.1039/c3ob40898a

Links

Tools

Export citation

Search in Google Scholar

Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The first example of an activated phosphonated trifunctional chelate (TFC) is presented, which combines a non-macrocyclic coordination site for lanthanide coordination based on two aminobis-methylphosphonate coordinating arms, a central bispyrazolylpyridyl antenna and an N-hydroxysuccinimide ester in para position of the central pyridine as an activated function for the labeling of biomaterial. The synthesis of the TFC is presented together with photo-physical studies of the related Tb and Eu complexes. Excited state lifetime measurements in H2O and D2O confirmed an excellent shielding of the cation from water molecules with a hydration number of zero. The Tb complex provides a high photoluminescence (PL) quantum yield of 24% in aqueous solutions (0.01 M Tris-HCl, pH 7.4) and a very long luminescence lifetime of 2.6 ms. The activated ligand was conjugated to different biological compounds such as streptavidin, and a monoclonal antibody against total prostate specific antigen (TPSA). In combination with AlexaFluor647 (AF647) and crosslinked allophycocyanin (XL665) antibody (ABs) conjugates, homogeneous time-resolved Fluorescence Resonance Energy Transfer (FRET) immunoassays of TPSA were performed in serum samples. The Tb donor-dye acceptor FRET pairs provided large Förster distances of 5.3 nm (AF647) and 7.1 nm (XL665). A detailed time-resolved FRET analysis of Tb donor and dye acceptor PL decays revealed average donor-acceptor distances of 4.2 nm (AF647) and 6.3 nm (XL665) within the sandwich immunocomplex and FRET efficiencies of 0.79 and 0.68, respectively. Very low detection limits of 1.4 ng mL(-1) (43 pM) and 2.4 ng mL(-1) (74 pM) TPSA were determined using a KRYPTOR fluorescence immunoanalyzer. These results demonstrate the applicability of our novel Tb-bioconjugates for highly sensitive clinical diagnostics.