Published in

Royal Society of Chemistry, Dalton Transactions, 13(42), p. 4416

DOI: 10.1039/c2dt32618c

Links

Tools

Export citation

Search in Google Scholar

A new approach to the synthesis of heteronuclear propeller-like single molecule magnets

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Propeller-like [Fe(4)(L)(2)(dk)(6)] complexes, in which Hdk is a β-diketone and H(3)L is a tripodal alcohol, R-C(CH(2)OH)(3), exhibit tunable magnetic anisotropy barriers and retain their magnetic memory effect when chemically anchored on metal surfaces. Heteronuclear analogues of these M(4) complexes have been sought to afford a library of compounds with different total spin (S) values, but synthetic efforts described so far gave solid solutions containing M(4) in addition to the desired M(3)M' species. We now present a novel synthetic route to M(3)M' complexes featuring a central chromium(iii) ion. The three-step preparation goes through coordination of Cr(III) by two equivalents of tripodal alkoxide (R = Et and Ph), followed by reaction of this complex "core" with the peripheral +III metal ions. Products have been characterised by chemical analyses together with (1)H-NMR, FTIR, W-band EPR, DC/AC magnetic susceptibility measurements and single crystal X-ray diffractometry. Due to the chemical inertness of Cr(III), this route yields 100% pure Fe(3)Cr complexes without metal scrambling; what is more, it is suitable for designing novel heteronuclear single molecule magnets (SMMs) with a variety of d- and f-metals and R groups.