Published in

Royal Society of Chemistry, Faraday Discussions, (157), p. 415

DOI: 10.1039/c2fd20046e

Links

Tools

Export citation

Search in Google Scholar

The last mile of molecular reaction dynamics virtual experiments: The case of the OH(N = 1-10) + CO(j = 0-3) reaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

By exploiting the potentialities of a recently implemented grid empowered molecular simulator based on the combination of collaborative interoperable service oriented computing and the usage of high performance - high throughput technologies, the results of crossed molecular beam experiments have been virtually simulated and compared with the real (measured) laboratory data for the reactive system OH + CO. The direct comparison of theoretically predicted laboratory angular distributions with experimental raw data avoids possible uncertainties associated with the analysis of crossed beam experiments, in which trial centre-of-mass functions are tested until the best-fit of the experimental data is achieved. To make such a comparison as accurate as possible, the rotational distributions of the OH radicals employed in previous crossed beam experiments have been characterized by laser-induced-fluorescence. The capability of performing massive calculations using grid-distributed technologies has allowed the running of quasiclassical trajectory calculations for all the initial rotational states of the OH radicals present in the beam (from the ground rotational state N(OH) = 1 up to N(OH) = 10) on three different potential energy surfaces and the comparison of related outcomes.