Published in

Royal Society of Chemistry, Journal of Materials Chemistry A: materials for energy and sustainability, 6(2), p. 1738-1749

DOI: 10.1039/c3ta13975a

Links

Tools

Export citation

Search in Google Scholar

Hydrogenated under-stoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work a hydrogenated under-stoichiometric tungsten oxide is introduced as an efficient anode interlayer in organic photovoltaics (OPVs). The benefits of hydrogen incorporation into the oxide lattice for obtaining desirable properties of tungsten oxides are explored. These benefits include the occupation of gap states near the Fermi level, which may facilitate charge transport, and the maintenance of a high work function, nearly similar to that of the stoichiometric tungsten oxide, which contributes to the formation of a large interfacial dipole at the anode interface and enhances charge extraction. A large improvement was achieved in the operational characteristics - especially in the open-circuit voltage - of bulk heterojunction solar cells based on different polymeric donors, namely poly(3-hexylthiophene), P3HT, or poly[(9-(1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl], PCDTBT, and the fullerene acceptor [6,6]-phenyl-C71 butyric acid