Published in

Royal Society of Chemistry, Journal of Materials Chemistry, 16(20), p. 3313

DOI: 10.1039/b919691a

Links

Tools

Export citation

Search in Google Scholar

Lanthanopolyoxotungstates in silica nanoparticles: Multi-wavelength photoluminescent core/shell materials

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Photoluminescent lanthanopolyoxotungstate core/shell nanoparticles are prepared by the encapsulation of lanthanide-containing polyoxometalates (POMs) with amorphous silica shells. The preparation of morphological well-defined core/shell nanoparticles is achieved by the hydrolysis of tetraethoxysilane in the presence of POMs using a reverse microemulsion method. The POMs used are decatungstolanthanoates of [Ln(W(5)O(18))(2)](9-) type (Ln(III) = Eu, Gd and Tb). Photoluminescence studies show that there is efficient emission from the POM located inside the SiO(2) shells, through excitation paths that involve O --> Eu/Tb and O --> W ligand-to-metal charge transfer. It is also shown that the excitation of the POM containing europium(III) may be tuned towards longer wavelengths via an antenna effect, by coordination of an organic ligand such as 3-hydroxypicolinate. The POM/SiO(2) nanoparticles form stable suspensions in aqueous solution having the advantage of POM stabilization inside the core and the possibility of further surface grafting of chemical moieties via well known derivatization procedures for silica surfaces. These features together with the possibility of tuning the excitation wavelength by modifying the coordination sphere in the lanthanopolyoxometalate, make this strategy promising to develop a new class of optical bio-tags composed of silica nanobeads with multi-wavelength photoluminescent lanthanopolyoxometalate cores.