Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Dalton Transactions, 11(39), p. 2928

DOI: 10.1039/b925978c

Links

Tools

Export citation

Search in Google Scholar

Luminescence quenching of Re(I) molecular rectangles by quinones

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The rhenium-based rectangles [{Re(CO)(3)(mu-bpy)Br}{Re(CO)(3)(mu-L)Br}](2) (I, L = 4,4'-dipyridylacetylene (dpa); II, L = 4,4'-dipyridylbutadiyne (dpb); III, L = 1,4-bis(4'-pyridylethynyl)benzene (bpeb); bpy = 4,4'-bipyridine) are emissive in solution at room temperature. The presence of extended pi conjugation leads to an increase in electron delocalization, which, in turn, results in improved luminescence and lower nuclear reorganization energy. These rectangles, upon electronic excitation, undergo facile electron transfer (ET) reactions with quinones and both the dynamic and static quenching contribute to the reaction. Spectral and electrochemical measurements show that quinone 7,7,8,8-tetracyanoquinodimethane (TCNQ) binds strongly to rectangle I. The driving force dependence of k(et), deduced from the luminescence quenching of rectangles with quinones, can be well accounted for within the context of the Marcus theory of electron transfer.