Published in

Cambridge University Press, Theory and Practice of Logic Programming, 4-6(10), p. 433-447

DOI: 10.1017/s1471068410000207

Links

Tools

Export citation

Search in Google Scholar

CHR(PRISM)-based probabilistic logic learning

Journal article published in 2010 by Jon Sneyers, Wannes Meert ORCID, Joost Vennekens, Yoshitaka Kameya, Taisuke Sato
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPRISM is an extension of Prolog with probabilistic predicates and built-in support for expectation-maximization learning. Constraint Handling Rules (CHR) is a high-level programming language based on multi-headed multiset rewrite rules.In this paper, we introduce a new probabilistic logic formalism, called CHRiSM, based on a combination of CHR and PRISM. It can be used for high-level rapid prototyping of complex statistical models by means of “chance rules”. The underlying PRISM system can then be used for several probabilistic inference tasks, including probability computation and parameter learning. We define the CHRiSM language in terms of syntax and operational semantics, and illustrate it with examples. We define the notion of ambiguous programs and define a distribution semantics for unambiguous programs. Next, we describe an implementation of CHRiSM, based on CHR(PRISM). We discuss the relation between CHRiSM and other probabilistic logic programming languages, in particular PCHR. Finally, we identify potential application domains.