Royal Society of Chemistry, CrystEngComm, 12(10), p. 1928
DOI: 10.1039/b812012a
Full text: Download
The dinuclear µ-acetato-µ-benzophenone iminato palladium complex [{(CN)Pd}2(µ-OAc)(µ-NCPh2)] (1) [CN = N,N-dimethylbenzylamine-κN,κC)] is prepared by reaction of [{(CN)Pd(µ-OAc)}2] with benzophenone imine and [NBu4]OH in ethanol. The dinuclear palladacycle 1 can crystallize with different solvents molecules as 1·1.5C6H5CH3, 1·0.25C6H5CH3 (Z′ = 2), 1·1.5C6H6 and 1·C6H14 (n-hexane) upon hexane diffusion into a toluene, benzene or CH2Cl2 solution, respectively. The structure of 1·0.25C6H5CH3 with two palladacycle molecules and two partly occupied toluene molecules in the asymmetric unit (Z′ = 2) is a consequence of partial toluenesolvent loss from 1·1.5C6H5CH3 (Z′ = 1) as was followed by solid-state CPMAS 13C NMR. The transformation from Z′ = 1 to Z′ = 2 (crystal “on the way”?) toluene solvate can proceed in a solid-state single-crystal-to-crystal transition as evidenced from multiple single-crystal X-ray diffraction studies, also when the crystals are still in their mother liquor. During this transformation the remaining toluene crystal solvent becomes “locked in” (immobile from static 2H (D) NMR, only lost above 80° from TGA) and the crystals of 1·0.25C6H5CH3 (Z′ = 2) remain crystalline in air in the absence of mother liquor or toluene, different from the other solvates. A rotational disorder of one of the benzene molecules in 1·1.5C6H6 (Z′ = 1) around its pseudo-six-fold axis is supported by the line-shape analysis of the static 2H (D) spectrum.